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Abstract—This paper studies the applications of data mining
techniques in early detection of numerical typing errors by hu-
man operators through a quantitative analysis of multichannel
electroencephalogram (EEG) recordings. Three feature extraction
techniques were developed to capture temporal, morphological,
and time—frequency (wavelet) characteristics of EEG data. Two
most commonly used data mining techniques, namely, linear dis-
criminant analysis (LDA) and support vector machine (SVM),
were employed to classify EEG samples associated with correct
and erroneous keystrokes. The leave-one-error-pattern-out and
leave-one-subject-out cross-validation methods were designed to
evaluate the in- and cross-subject classification performances,
respectively. For the in-subject classification, the best testing per-
formance had a sensitivity of 62.20% and a specificity of 51.68 %,
which were achieved by SVM using morphological features. For
the cross-subject classification, the best testing performance was
achieved by LDA using temporal features, based on which it had
a sensitivity of 68.72% and a specificity of 49.45%. In addition,
the receiver operating characteristic (ROC) analysis revealed that
the averaged values of the area under ROC curves of LDA and
SVM for the in- and cross-subject classifications were both greater
than 0.60 using the EEG 300 ms prior to the keystrokes. The
classification results of this study indicated that the EEG patterns
of erroneous keystrokes might be different from those of the
correct ones. As a result, it may be possible to predict erroneous
keystrokes prior to error occurrence. The classification problem
addressed in this study is extremely challenging due to the very
limited number of erroneous keystrokes made by each subject
and the complex spatiotemporal characteristics of the EEG data.
However, the outcome of this study is quite encouraging, and it
is promising to develop a prospective early detection system for
erroneous keystrokes based on brain-wave signals.

Index Terms—Early detection, electroencephalography (EEG)
classification, mental state monitoring, typing errors.
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1. INTRODUCTION

UMEROUS types of electronic devices with alphabetical

or numerical keyboards have become very important tools
in modern times. An erroneous keystroke can be easily caused
by many reasons, such as the operators’ inexperience, fatigue,
and carelessness. At the present time, many typing error cor-
rection systems have been developed for computer users. For
example, current word processing software such as Microsoft
Word provides automatic spelling checks as well as automated
corrective actions. Some other methods have also been devel-
oped to detect and remove errors due to overlapped keystrokes
[47]. It is noted that most of the automatic typing error detection
systems are designed for text typing; very few studies have
focused on detecting numerical typing errors. In fact, numerical
typing is as a common task as text typing in practice [41], [42].
In particular, in some crucial tasks, numerical typing errors
may result in serious consequences or accidents. For instance,
numerical typing errors in medical records may result in in-
accurate diagnoses and/or drug administrations. In financial
transactions, numerical errors may cause significant losses at
the stock exchanges. In aviation control, incorrect numerical
inputs may lead to serious air traffic accidents [51].

Human typing involves intricate interactions of concurrent
perceptual and cognitive processes [40]. Numerous studies of
typing behaviors have been conducted to explore their un-
derlying cognitive mechanisms in the past decade. However,
most studies in the literature were in the field of transcription
(text) typing. Error correction of numerical data is much more
difficult and challenging because there is no pattern database to
look up. The operator cannot visualize and identify if there are
errors in the data because there is no contextual information
for verification. This is very common in hear-and-type tasks
such as telling a phone number to a phone representative, bank
account number to a teller, and tracking number of a parcel to
a customer service agent. The operators are very susceptible to
making errors when they receive auditory inputs while typing.

Although double data entry (DDE) and read-aloud (RA)
[22] methods are commonly used to assure the data quality,
these methods are very tedious and inefficient. Moreover, in
reality, to avoid typing errors, each data entry may accompany
a confirmative action, such as pressing an ENTER key, before
which input data can be checked and corrected. However, such
a mechanism does not always exist. For example, a selection
menu may be coded by numbers, and pressing a number already
commands the execution. In this kind of situations, afterward,
detection mechanism is too late to reverse the outcome. Par-
ticularly in a crucial task, such numerical errors may result in
serious or even life-threatening consequences. As a result, when
afterward checking/confirmation is limited or even impossible,
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predicting and avoiding numerical typing errors are becoming
very critical to assure data quality. Unfortunately, to the best of
our knowledge, there are no effective tools available to assist
human operators in this task. If numerical typing errors can be
detected in advance, the detection can be integrated in an error
prevention system for many crucial typing works.

Erroneous keystrokes are possibly caused by an operator’s
psychophysiological state such as a lack of attention, exter-
nal distractions, and fatigue. In our previous study, we have
successfully built a computational model, called the queuing-
network-model human processor, to establish mathematical
representations of cognitive functions of typing behaviors. The
results of our study on brain modeling and human factor anal-
ysis of erroneous keystrokes suggested that the brain activity
before erroneous keystrokes might be different from that of the
correct ones [24], [49]. The goal of this paper is to develop
an early detection system of erroneous keystrokes. We employ
feature extraction and data mining techniques to perform quan-
titative analysis of electroencephalogram (EEG) recordings
prior to keystrokes. Although there have been numerous EEG
studies in various fields, very few studies in the literature have
been conducted to investigate the early detection (or prediction)
of typing behaviors based on EEG data. The characterization
of the underlying EEG patterns before someone is about to
make an error is still in a great need of further investigation.
The development of an effective method to classify erroneous
keystrokes based on their (generating) mechanisms remains a
difficult but worth-pursuing task.

The rest of this paper is organized as follows. In
Section II, the research background and previous related work
are discussed, including the background of data entry correction
methods, error-related EEG potentials, and the data mining
techniques for quantitative EEG analysis. In Section III, the
proposed EEG feature extraction techniques and the employed
classification techniques, namely, linear discriminant analysis
(LDA) and support vector machine (SVM), are described.
Section IV presents the design of human experiments and
computational data analysis. The computational results of the
classification systems are provided in Section V. Finally, the
concluding remarks and future work are given in Section VL.

II. BACKGROUND
A. Data Entry Correction Methods

A number of studies have been performed to develop cor-
rection methods for numerical typing errors. Scholtus [41],
[42] developed an algorithm for automatic correction of typing
errors in numerical data. However, this algorithm can be only
applied to some systematic typing errors, such as checking the
inconsistencies when there are mathematical relations between
the data digits. Kawado et al. [22] compared the efficiencies of
the two commonly used data verification methods: DDE and
RA. In the DDE method, the DDE was performed by either an
identical or a different operator. In the RA method, one operator
read the typed data on a printed sheet or computer screen
aloud, and another operator compared the data (that were)
heard with the data (that were) recorded to confirm whether
they are the same. The error detection rates were 59.5% and
69.0% for the RA and DDE methods, respectively. Their results
surprisingly showed that there might still be a large portion
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of undetected errors even after the two commonly used data
verification methods were applied. Their study also indicated
that it is very hard to achieve full accuracy for large amount of
numerical data input even when data verification methods are
used to the data management. As mentioned in Arndt et al. [5],
the databases of large projects may contain a great absolute
number of mistakes in data collection and thus have data quality
problems. They investigated the types and frequencies of data
errors in 688 forms from seven sites in a multicenter field trial.
It was found that 2.4% of the received data had errors even
though conscientious efforts had been made in checking and
correcting the data.

B. ErrPs

Typing behaviors involve complex interactions of concurrent
perceptual and cognitive processes [40]. The brain-wave activ-
ity measured by EEG is often an essential and natural way to
study the brain activity during typing. The event-related poten-
tials (ERPs) in response to a perceptual, cognitive, or motor
event have been extensively studied in neuroscience and brain—
computer interfaces (BCIs) [19]. Since the early 1990s, many
studies have found that a subject’s recognition of response
errors is often associated with some specific error-related EEG
potentials [14], [30]. More recently, the work of Ferrez and
Millan [36] has shown that the error-related potential (ErrP) of
a BCI can be reliably recognized. The pioneering work in ErrP
detection provided a prelude for us to explore the underlying
mechanisms of erroneous keystrokes. It should be noted that
current ErrP studies mostly focused on the EEGs after response
errors, and the EEGs prior to errors were much less studied.
However, EEGs prior to errors are of great importance to pre-
vent errors from occurring, particularly in some crucial typing
tasks mentioned in the introduction part. Therefore, this study
particularly focused on early error detection using EEGs prior
to keystrokes.

C. Data Mining in EEG: Feature Extraction

Over the past decade, numerous studies have been performed
to apply quantitative signal processing methods and time series
techniques to analyze the characteristics of EEG data. The
simplest feature extraction can be obtained by downsampling
an EEG signal from its usually high sampling rate (such as
1000 Hz) into a low-frequency range of particular interest
(such as 0-30 Hz). The resulting features are supposed to be
a representative of the temporal characteristics of EEG data in
this low-frequency band [7]. Another common univariate fea-
ture extraction method uses the morphological characteristics
of EEG data, such as curve length [32], zero crossings [38],
number of peaks [48], nonlinear energy [2], etc. In addition,
grounded in signal processing techniques, some more complex
EEG feature extraction techniques have also been developed.
Traditional linear methods include frequency and power spec-
trum analysis and the parametric modeling of EEG time series
(e.g., autoregressive, moving average, and autoregressive mov-
ing average models). Although widely used in EEG analysis,
these methods actually treat EEG as statistically stationary
signals. To deal with nonstationarity in EEG, various methods
based on time—frequency analysis have been developed. The
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most well-known time—frequency technique is called wavelet
transform (WT), which is capable of providing a representation
of nonstationary EEG signals in both time and frequency do-
mains accurately.

D. Data Mining in EEG: Classification

Over the past decade, there were increasing interests in
using classification techniques to discriminate different brain
activities based on EEG recordings. Numerous data mining
techniques have been proposed to EEG classification. Those
methods include decision trees [35], neural networks [44], as-
sociation rule induction [13], K -nearest-neighbor method [10],
and genetic algorithms [31]. There have been many studies sug-
gesting that EEG signals at different mental states or in different
mental tasks may be classifiable [3], [4], [6], [29], [43].

The error detection task in this paper is, in principle, a binary
classification problem of correct and erroneous EEG samples.
LDA and SVM are two popular classification techniques for
binary classification tasks. Both of them construct a hyperplane
to separate data into two subsets based on optimization theo-
ries. Parra et al. [18] used LDA to detect response errors for
seven subjects in a forced choice visual discrimination task.
Using 64 EEG electrodes and two time windows of 100 ms,
they were able to reach an accuracy of 79% on average.
Blankertz et al. [7] adopted the sparse Fisher discriminant to
differentiate an index finger movement from a small finger
movement in a self-paced key typing task. Using EEG data
120 ms prior to keystrokes, they achieved overall classification
accuracies of 96.7% and 93.6% for filtered and nonfiltered
EEG data, respectively. SVMs have also been widely applied
to a large number of EEG classification problems [17], [50].
Our group successfully applied data mining techniques to clas-
sify normal and abnormal (epileptic) brain activities based on
EEG recordings of a number of epileptic patients [8]-[10].
Garrett ef al. [18] applied both LDA and SVM to classify
EEG signals in five mental tasks. The averaged classification
accuracies of LDA and SVM were 66% and 72%, respectively.

III. METHODS
A. Feature Extraction

We employed three feature extraction techniques to capture
the characteristics of EEG signals. They were temporal, mor-
phological, and wavelet features. For an EEG epoch with n
channels, we first extracted features from each channel and
then concatenated the features of all the n channels to con-
struct the feature vector of this multichannel EEG epoch. Let
X ={z1,22,...,2,} denote a single-channel EEG with m
sampling points, and the extractions of the temporal, morpho-
logical, and wavelet features of X are described as follows.

Temporal Features: The temporal features can be obtained
by downsampling of EEG signals. The downsampling of EEG
data reduces the amount of data that needs to be analyzed while
it is still capable of capturing patterns for slow brain activity
[7]. Since the most common EEG patterns (e.g., alpha, beta,
delta, and theta wave patterns) contain frequency elements that
are mainly below 30 Hz, we downsampled the EEG data from
1000 to 30 Hz in this study. In particular, the downsampling
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was accomplished by calculating the means of consecutive
nonoverlapping intervals of every 33 points. For example, a
100-ms EEG epoch of 1000 Hz has 100 points in each channel,
then three temporal features are extracted for each channel of
EEG through the downsampling process.

Morphological Features: Seven morphological features
were extracted from each channel of EEG. These features were
based on the features previously described in Wong et al. [48].
A brief description of the morphological features is given in the
following.

1) Curve length: This feature is also known as “line length,”
which was first proposed by Olsen et al. in [32]. Curve
length is the sum of the distances between successive
points, given by

m—1

Z |Tit1 — xil. Q)
i=1

Since the curve length increases as the signal magni-
tude or frequency increases, it can be used to measure the
amplitude-frequency variations of the EEG signals. It has
been used in many EEG studies, such as epileptic seizure
detection [11] and stimulation responses of the brain [12].

2) Standard deviation: It is among the most widely used
measures of signal variability. It indicates how all the
points of the signal are clustered around the mean. The
standard deviation can be obtained by

221(332 - X)?

—— 2
where X is the mean of the single-channel EEG X.

3) Number of peaks: The number of peaks per second is
a commonly used characteristic to measure the overall
frequency of EEG signals. The number of peaks in the
single-channel EEG X can be calculated by

-2

max {0, sgn(x; 12 — x11) —sgn(zip1 —x:)}.  (3)
1

3

N =

%

4) Root-mean-square (rms) amplitude: RMS is one of the
most commonly used methods to determine the power
changes of a signal [28], particularly for complex wave-
forms, such as EEG signals. The rms amplitude of the
single-channel EEG X is defined as

m 92

1 g

“4)

5) Average nonlinear energy: Nonlinear energy was first
proposed by Kaiser [20]. It is a measure of signal en-
ergy that is proportional to both signal amplitude and
frequency. It has been found that the nonlinear energy
is sensitive to spectral changes. Thus, it is also useful to
capture the spectral information of an EEG signal [2]. The
average nonlinear energy of the single-channel EEG X is
computed as

m

m—1

1 2
— Z Ti — Xy 1Tyl &)
m— 2 =
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6) Zero crossings: The frequency information of EEG sig-
nals can also be estimated by the number of times that
its value crosses the zero axis. Zero-crossing feature
extraction has been applied in many signal processing and
pattern recognition tasks, including EEG signal analysis
[38]. The zero crossings of the single-channel EEG X can
be mathematically defined as

DN | =

m—1
:£:|Sgn($¢+1)-sgn($iﬂ~ (6)
i=1

7) Variance-to-range ratio: This feature calculates the ratio
of the variance to the magnitude range of the EEG signal.
It takes into account both variation and range of EEG
magnitudes. The ratio of the single-channel EEG X is

given by
> (i — X)?
i=1
(m - 1)(Xmax - Xmin) (7)

where X, and X ,;, are the maximum and minimum
values of X, respectively.

Time—Frequency Features: WT was employed to analyze the
time—frequency characteristics of the EEG signals. The basic
idea of wavelet analysis is to express a signal as a linear
combination of a particular set of functions obtained by shifting
and dilating one single function called mother wavelet. The WT
of the signal X (¢) is defined as

C(a,b) = ZX(t)\}a\p (t ; b) dt (8)

where U is the mother wavelet, C'(a,b) denotes the WT co-
efficients of the signal X (¢), a is the scale parameter, and b is
the shifting parameter. Continuous WT (CWT) has a € R and
b € R; and discrete WT (DWT) has a = 27 and b = k27 for all
(j, k) € Z given the decomposition level of j. Analyzing the
signal by CWT at every possible scale a and shifting b requires
substantially more computations than the DWT. As a result,
the DWT with dyadic scaling and shifting is often employed
in many studies to decompose EEG signals into different fre-
quency subbands [39]. The coefficients of DWT decomposition
provide a nonredundant and highly efficient representation of a
signal in both time and frequency domains. At each level of de-
composition, DWT works as filters to divide the signal into two
bands called approximations and detail signals. The approxi-
mations (A) are the low-frequency components of the signal,
and the details (D) are the high-frequency components. For
more detailed mathematical formulations of WT, refer to [1].
Among different wavelet families, Daubechies wavelets are
well known for their orthogonality property and efficient filter
implementation, and the db4 is frequently used in EEG analysis
[46]. In this paper, we applied the typical db4 to decompose
EEG signals into eight levels. Table I shows the frequency
bands of different levels of DWT decomposition. Since the
frequency band of EEG signals is often considered to be less
than 30 Hz, we employed the coefficients of levels A7, D7, D6,
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TABLE 1
FREQUENCY RANGES AND THE CORRESPONDING BRAIN-WAVE
BANDS OF THE EIGHT LEVELS OF SIGNALS BY
DISCRETE WAVELET DECOMPOSITION

Decomposed Signal | Frequency Range (Hz) | Approximate Band

D1 250-500 -

D2 125-250

D3 62.5-125

D4 31.3-62.5 -

D5 15.7-31.3 Beta

D6 7.9-15.7 Alpha

D7 4.0-7.9 Theta

AT 0-4.0 Delta

and D5, which roughly correspond to the commonly recognized
delta, theta, alpha, and beta brain waves, respectively. The other
four levels of signals were considered as the high-frequency
background noises and thus were eliminated in the wavelet
feature vector. Moreover, to further decrease the feature dimen-
sionality for classification, the statistics of the DWT coefficients
were extracted. They are the mean, standard deviation, maxi-
mum, and minimum of the wavelet coefficients of the four used
levels. By doing so, each channel of EEG can be represented
by a4 x 4 = 16 dimensional feature vector, and an EEG epoch
of n channels can be represented by a 16n-dimensional feature
vector.

B. Classification Methods

Let Y denote the n x k£ dimensional feature vector for a
multichannel EEG epoch, where n is the number of channels
and k is the number of features of each single channel of
EEG. In this paper, n = 36 and k¥ = 3,7, and 16 for temporal,
morphological, and wavelet features, respectively. Let [ denote
the class label of the EEG epoch, for which [ =1 denotes
a correct EEG sample and [ = —1 means an erroneous EEG
sample. Given p + ¢ training samples (Y;,0;), i =1,...,p+ ¢,
the data set of p correct EEG epochs is denoted by D; =
{(Y1,h), (Ys,12),...,(Y,, 1)}, and the data set of ¢ erroneous
epochs is denoted by Do = {(Ypi1,lpt+1): Ypt2,lpt2), ..+
(Yp+qslp+q)}- The difference between them is that the optimal
decision boundary is determined based on different optimiza-
tion theories, which will be briefly discussed in the following.

Fisher’s LDA: Fisher’s LDA aims to find an optimal pro-
jection by minimizing the intraclass variance and maximiz-
ing the distance between the two classes simultaneously [16].
Mathematically, LDA tries to find an optimal direction w* €
R™* as a solution of the following optimization problem:

. wl Spw
w" = argmax —r——
w wlS, w

&)

where w is the direction of the hyperplane that is used to
separate the two data sets. S, and S, are the interclass and
intraclass covariance matrices, respectively. They are defined
as follows:

(10)
Y

Sb = (m1 — mg)T(ml — mg)

Su=> > (Yi—m)"(Yi —my)

i€l,2ieD;
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where my and ms are the means of the feature vectors Y in
the two data sets D and Do, respectively. They can be calcu-
lated by

1 1<
m == > Y:;ZYZ» (12)
YeD, i=1
1 i R
mngZY:fZYi. (13)
leD2 pi:p+q

When S, is not singular, the aforementioned optimization
problem can be solved by applying the eigen-decomposition to
the matrix S;1Sy,. The eigenvector corresponding to the largest
eigenvalue forms the optimal direction w* by

w* = 85 (my —ms). (14)

When S, is singular, an identity matrix with a small scalar
multiple can be used to tackle this problem [27]. The optimal
w™ then becomes

W' = (S, + M) "H(my —my). (15)

Once w* is obtained, the optimal decision boundary of LDA

can be represented by

WTY +b5=0 (16)
where b is the bias term. There is no general rule to determine
the bias term; the most commonly used bias term is b =
—w*T(my 4+ mg)/2. The class of an EEG epoch Y depends on
which side of the hyperplane that its feature vector is on. In
particular, for a new EEG epoch represented by a feature vector
Yiew, then the prediction rule is as follows:

WY o + b > 0,
WY ew + b <0,

lhew = 1 (an erroneous keystroke)
lhew = —1 (a correct keystroke).

SVM: SVMs are another group of binary classification tools,
which have been successfully applied in many EEG classifi-
cation problems [7], [18], [21], [23], [37]. The fundamental
problem of SVM is to build an optimal decision boundary to
separate two categories of data. In the data sets of EEG epochs
D, and Do, each EEG epoch is represented by an n x k di-
mensional feature vector. One can actually find infinitely many
hyperplanes in R™** to separate the two data groups. Based
on the statistics learning theory, an SVM selects a hyperplane
which maximizes its distance from the closest point from the
samples. This distance is referred to as margin. The standard
SVM formulation that maximizes the margin and minimizes
the training error is as follows:

1 p+q
ming ¢ {2||w||2 +CY & DY wtbe) > e—¢
i=1

A7)

where w is the weight vector, e is a vector of ones, b is an offset
parameter, and the slack variables ¢ are introduced to measure
the degree of misclassification during training. The parameter
b/||w]|| determines the offset of the hyperplane from the origin
along the weight vector w. The penalty cost C' is used to control
the tradeoff between a large margin and a small prediction error
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penalty. Each column of Y is an observation Y;, and D is a
diagonal matrix with class-label elements D;7 equal to 1 if Y;
belongs to one class or —1 if otherwise. Vector e has all its
elements equal to one. The first term of the objective function
in (17) is due to maximizing the margin of separation 2/||w||,
and the second term measures how much emphasis is given to
the minimization of the training error.

Since the standard SVM classifiers usually require a large
amount of computation time for training, the proximal SVM
(PSVM) algorithm was introduced by Mangasarian and Wild
[26] as a fast alternative to the standard SVM formulation. The
formulation for the linear PSVM is as follows:

1 1
ming, ¢ p {2 (||w||2+b2)—|—§C§iT£i DY w4 be)=e—¢
(18)

where the traditional SVM inequality constraint is replaced
by an equality constraint. This modification changes the na-
ture of the support hyperplanes (WY + b = +1). Instead of
bounding planes, the hyperplanes of PSVM can be thought of
as “proximal” planes, around which the points of each class
are clustered and which are pushed as far apart as possible by
the term (||w]||? + b?) in the aforementioned objective function.
It has been shown that PSVM has comparable classification
performance to that of standard SVM classifiers, but can be an
order of magnitude faster [26]. Therefore, we employed PSVM
in this study.

IV. TYPING EXPERIMENT
A. Experimental Design

The experimental task was a typical hear-and-type task which
emulated daily work done by bank tellers or representatives in
customer services. A computer program read out 30 random
numbers of nine digits in a trial, and the subjects were told
to type out those numbers. The numbers were not linguisti-
cally grouped, i.e., every digit was read out separately without
chunking two or three digits (e.g., read 123 as “one two three”
instead of “one twenty three” or “one hundred twenty three”).
In addition, there was a small pause (300 ms) in between every
three digits. The numbers were read out this way because, based
on an observation and interview by the author in a pilot study,
this was the most natural way to read out numbers without any
specific format known beforehand. The interval between two
digits is 750 ms on average. A short pause of 2.5 s existed
after each nine-digit number, during which the subjects would
be reminded of pressing the enter key.

Nine subjects were recruited from the student body of Uni-
versity at Buffalo. All subjects were native speakers of English
without any hearing disability. Before the experiment, each
subject was pretested on his/her typing skill to assure his/her
familiarity with typing. The subjects were allowed to adjust the
volume, posture, and other settings of typing environment to
his/her preference. Each subject was given two practice trials
prior to formal experimental trials. If a subject did not show any
inability in the hear-and-type task, she or he was then allowed
to continue eight trials of hear-and-type tasks. During each trial,
the EEG data of each subject were recorded. A 5-min break was
given to subjects after four trials so that their EEG would not be
influenced by long exposure to a relatively boring task.
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TABLE 1I
TYPING PERFORMANCE OF EACH SUBJECT

subject | # Keystrokes | # Erroneous Keystrokes | Percentage of Erroneous Keystrokes
1 2122 36 1.70%
2 2113 51 2.41%
3 2419 69 2.85%
4 2401 10 0.42%
5 2422 60 2.48%
6 2117 76 3.59%
7 2420 45 1.88%
8 2405 63 2.62%
9 2134 54 2.53%

The descriptive statistics of the typing performance of the
nine subjects are summarized in Table II. No significant
difference was found in terms of age, accuracy, or typing
speed between male and female subjects. Hence, male and
female subjects can be regarded as a homogeneous group. The
percentage of erroneous keystrokes was ranged from 0.42% on
subject 4 to 3.59% on subject 7. The latency between auditory
stimuli and keystrokes was 728 ms on average.

B. EEG Acquisition and Preprocessing

During the experiment, EEG data were collected with an
EEG cap containing 40 Ag/AgCl electrodes according to the
international 10-20 system. There are four electrodes that
were used for measuring eye movements to remove muscular
artifacts. The rest 36 electrodes were mounted on the scalp
and thus used for analyses in this paper. The placement of
the 36 scalp electrodes is shown in Fig. 1. The signals were
amplified by NuAmps Express system (Neuroscan Inc., USA)
and sampled at 1000 Hz. The typed number, as well as the
timing of each keystroke, was recorded simultaneously by
the system. After comparing with the reference number, each
keystroke was labeled as either “correct” or “erroneous” by
using “1” and “—1,” respectively. The raw EEG data were
first processed by a 0.1-30-Hz bandpass filter [34]. Then, the
EEG epochs were extracted from the filtered database on the
keystroke events recorded during typing. The length of each
EEG epoch was set to 500 ms before a keystroke according to
the minimal interval between two successive keystrokes. The
flowchart of the EEG acquisition and the epoch sampling is
shown in the upper part in Fig. 2.

C. Classification Procedure

As shown in Fig. 2, each 500-ms EEG epoch was divided into
five nonoverlapping subepochs with equal length of 100 ms.
The size of subepochs was chosen empirically with the goal
of obtaining salient information of the brain activity prior to
keystrokes. The temporal, morphological, and wavelet features
of each 100-ms EEG epoch were extracted. The feature vector
of a multichannel EEG epoch was constructed by concatenating
the feature vectors of all the channels. For example, if we
want to classify the 100-ms EEG epochs based on temporal
features, then each epoch was represented by a 3 x 36 = 108
dimensional feature vector. Similarly, the morphological fea-
ture dimension for an EEG epoch is 7 x 36 = 252, and the
wavelet feature vector has a dimension of 16 x 36 = 576.

D. Evaluation Metric of a Single Prediction

Sensitivity and specificity are commonly used performance
measures of binary classification tests. For example, people are
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Fig. 1.

Allocations of the 36 scalp electrodes.

tested for a disease in a clinic study. Sensitivity is defined as
the proportion of actual positives which are correctly identified
as positive, and specificity is the proportion of negatives which
are correctly identified as negative. In this paper, we labeled
the erroneous EEG samples as positive and the correct EEG
samples as negative. Then, we use sensitivity to measure the
percentage of erroneous EEG samples that are correctly iden-
tified as positive and specificity to measure the percentage of
correct EEG samples that are correctly identified as negative.
For each testing EEG sample, the classification result can be
always categorized into one of the following four subsets:
1) true positive (TP): if an erroneous EEG epoch is classified
as positive;
2) false positive (FP): if a correct EEG epoch is classified as
positive;
3) true negative (TN): if a correct EEG epoch is classified as
negative;
4) false negative (FN): if an erroneous EEG epoch is classi-
fied as negative.
Then, sensitivity and specificity can be calculated as follows:

TP
Sensitivity = m (19)
TN

E. Training and Evaluation

A standard classification problem generally follows a two-
step procedure which consists of training and testing phases.
During the training phase, a classifier is trained to achieve
the optimal separation for the training data set. Then, in the
testing phase, the trained classifier is used to discriminate
new samples with unknown class information. The leave-
one-out cross-validation is an attractive method of model
evaluation, and it is capable of providing almost unbiased
estimate of the generalization ability of a classifier [45]. In this
paper, we trained and tested the classifiers under two frame-
works, namely, in- and cross-subject error detections. Corre-
spondingly, two leave-one-out cross-validation methods with
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of AUC indicates the overall performance of a classifier. It may also indicate the classificability of the two data sets without knowing the distributions of the two
data sets based on the current classification framework.
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perturbed duplications of erroneous samples were designed to
achieve an unbiased estimate of the classification performance.
The two methods are described in the following.

1) In-subject error detection: training and testing on each
subject individually. We employed a leave-one-error-
pattern-out cross-validation method for each subject. Let
n. and n. denote the numbers of correct and erroneous
keystrokes of a subject. Each time, we picked one er-
roneous EEG sample and [n./n.| correct samples out
and trained the classifier by the rest of the samples.
To eliminate the unbalanced problem during training,
we employed an oversampling method with perturbed
replications of erroneous samples. Let n! and n! denote
the numbers of correct and erroneous samples in the
training data set (n! > n!). Then, the feature vector of
each erroneous sample was replicated [n!/n!] times. For
each replication, a synthetic erroneous feature vector was
generated by adding a random perturbation to the original
erroneous feature vector. In particular, let Y; be a feature
vector of an erroneous EEG sample; then, a synthetic
erroneous feature vector Yj’ can be created by

Y, =Y

Te

Y/ =Yj+ax (1)

where Y, and 7, are the 1 x 36k vectors, which contain
the means and standard deviations of the 36k features
for all the erroneous samples in the training data set and
« is a random number that is uniformly generated in
[—1, 1]. The trained classifiers were tested on the left-
out samples. Repeat the procedure for all the erroneous
samples of a subject. The averaged prediction result was
used to indicate the classification effectiveness based on
the current data set.

2) Cross-subject error detection: In this framework, we spec-
ulate that the erroneous EEG patterns of different subjects
may share some common characteristics due to a high
level of uncertainty or anxiety prior to making typing
errors. There have been a number of recent BCI stud-
ies focusing on subject-independent ERP classification.
The studies showed that the EEG potentials of different
subjects may exhibit similar waveform characteristics in
performing the same mental task [15], [25]. Stemmed
from this consideration, we designed a leave-one-subject-
out method to train and evaluate the classifiers. Each
time, we picked one subject out and trained the classi-
fiers by the EEG samples from the rest eight subjects.
The oversampling method with perturbed replications of
erroneous samples was also used to form a balanced
training data set. The EEG samples of the left-out subject
were considered as unknown samples to test the trained
classifiers. Repeating this procedure for all the subjects,
the averaged prediction accuracy can be used to indicate
the effectiveness of the trained classification models.

F. ROC Analysis

Receiver operating characteristic (ROC) analysis is another
popular method to evaluate the performance of a prediction
model. An ROC curve is a plot of sensitivity versus false-alarm
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rate (1-specificity) as the discriminant threshold of a classifier
varied throughout its possible ranges. The ROC curve for a
perfect prediction model is the line connecting [0, 0] to [0, 1]
and [0, 1] to [1, 1]. Moreover, the diagonal line connecting
[0, O] to [1, 1] is the ROC curve corresponding to a random
model. Generally, an ROC curve lies between these two ex-
treme lines. The area under the ROC curve (AUC) is often
used as an important metric to evaluate a prediction model. The
AUC is an overall summary of prediction accuracy across the
spectrum of its decision-making values. AUC values are usually
between 0.5 and 1. The AUC of a perfect predictor is 1 while
a purely random chance model has an AUC of 0.5 on average.
The higher the AUC value is to one, the better the prediction
power a predictor has. A typical generation procedure of the
ROC curve for a classifier is shown in Fig. 3. One may also find
that the value of AUC may also be a classificability index of the
two data sets without knowing their exact distributions based
on the current classification framework.

V. RESULTS
A. In-Subject Sensitivity and Specificity Analysis

Table III summarizes the in-subject training and testing sen-
sitivity and specificity of LDA and PSVM based on the leave-
one-error-pattern-out cross-validation methodology using the
three choices of EEG features. The best training performance
was achieved by the wavelet features for both LDA and PSVM.
Using wavelet features, the training sensitivity and specificity
were above 90% for both LDA and PSVM at all the five time
intervals. It had an averaged training sensitivity of above 90%
and an averaged specificity of above 80% when using morpho-
logical features. The temporal features had the worst training
performance, which had an averaged training sensitivity of
above 80% and an averaged specificity of above 70%. As for
the testing performance, a noteworthy observation is that the
best testing results of LDA and PSVM were both achieved at
the time interval of —100 ~ 0 ms. In particular, the best testing
performance of LDA was achieved at a sensitivity of 62.77%
and a specificity of 51.03% when using morphological features,
while the best testing performance of PSVM had a sensitivity of
62.20% and a specificity of 51.68% when using morphological
features. In a contrast experiment, we also tested a randomized
detection model with prior probability of error rate (RDPP). For
a subject with an error rate of p, the RDPP classified each EEG
sample as erroneous with a probability of p and as correct with a
probability of 1 — p. The testing results of the RDPP are shown
in the last row in Table III. It was noted that only about 2%
of the erroneous keystrokes can be detected on average by the
RDPP, while both LDA and PSVM detected more than 60% of
the erroneous keystrokes at a time interval of —100 ~ 0 ms. Our
trained classification models considerably increased the error
detection rate.

In addition, the averaged testing sensitivities of LDA and
PSVM over the nine subjects and the three choices of features
for the five time intervals are shown in Fig. 4. Interestingly, the
error detection accuracies tended to increase as the time interval
became closer to the timing of keystrokes, particularly at the
last three 100-ms time intervals. This observation may indicate
that, the closer the analyzed EEGs to the keystrokes, the more
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TABLE III
IN-SUBJECT TRAINING AND TESTING RESULTS OF LDA, PSVM, AND A RANDOM MODEL BASED ON THE LEAVE-ONE-ERROR-PATTERN-OUT
CROSS-VALIDATION METHODOLOGY (RESULTS WERE ALL AVERAGED OVER THE NINE SUBJECTS)

Classifier Feature -500ms -400ms -300ms -200ms -100ms

sen. spe. sen. spe. sen. spe. sen. spe. sen. spe.
Temporal | 87.11% | 76.33% | 87.64% | 76.76% | 88.26% | 76.84% | 85.07% | 76.66% | 89.63% | 79.19%
LDA Morph. 95.08% | 84.64% | 95.62% | 85.20% | 95.28% | 85.20% | 96.41% | 85.21% | 95.71% | 86.16%
Training Wavelet 99.59% | 93.67% | 99.78% | 94.43% | 99.59% | 93.28% | 99.34% | 93.64% | 99.23% | 93.71%
Results Temporal | 87.16% | 75.74% | 87.33% | 76.37% | 87.03% | 76.70% | 86.90% | 76.77% | 87.40% | 78.08%
PSVM Morph. 93.73% | 82.71% | 95.57% | 84.01% | 93.22% | 83.36% | 96.08% | 83.88% | 95.89% | 85.05%
Wavelet 99.28% | 92.42% | 99.74% | 92.64% | 99.52% | 92.60% | 99.63% | 93.45% | 99.66% | 93.68%
Temporal | 56.03% | 50.02% | 57.47% | 49.86% | 54.88% | 49.26% | 61.28% | 49.68% | 61.74% | 49.83%
LDA Morph. 54.48% | 50.35% | 55.93% | S51.13% | 58.81% | 50.73% | 55.17% | 51.23% | 62.77% | 51.03%
Testing Wavelet 53.10% | 49.72% | 55.91% | 50.41% | 52.03% | 50.85% | 54.74% | 51.97% | 56.95% | 49.70%
Results Temporal | 55.62% | 50.16% | 57.83% | 49.58% | 55.89% | 49.44% | 59.88% [ 49.61% | 63.15% | 49.37%
PSVM Morph. 52.87% | 50.48% | 55.82% | 50.75% | 60.13% | 51.05% | 58.92% | 50.91% | 62.20% | 51.68%
Wavelet 50.98% | 50.49% | 57.00% | 50.28% | 51.37% | 50.63% | 55.30% | 51.64% | 57.00% | 50.52%
RDPP - 2.35% 97.73% 2.18% 97.74% 2.33% 97.72% 2.21% 97.72% 2.32% 97.73%

LDA: Linear Discriminant Analysis; PSVM: Proximal Support Vector Machine; RDPP: Randomized Detection Model Based on Prior Probability

of Error Rate.
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Fig. 4. Averaged testing sensitivity of LDA and PSVM over the nine subjects
and the three choices of features for the five time intervals. In both in- and cross-
subject experiments, there is an increasing trend of error detection accuracy as
the time interval moves closer to the timing of keystrokes.

prominent brain-wave patterns can be captured to discriminate
an upcoming erroneous keystroke from the correct ones. This
result nicely matches with our physiological intuition and the
previous study of Blankertz et al. in [7], which also reported
increased classification accuracies in detecting upcoming finger
movements (keystrokes) based on EEG recordings prior to the
keystrokes. They also claimed that the most salient informa-
tion of brain may be gained within 230 ms before the finger
movements based on their experiments. However, this hypoth-
esis still needs further investigation in future work.

B. Cross-Subject Sensitivity and Specificity Analysis

Table IV summarizes the cross-subject training and testing
performance based on the leave-one-subject-out cross-
validation methodology. It is noted that the cross-subject
training performance was worse than the in-subject training
performance. The best training performance of LDA has a
sensitivity of 52.64% and a specificity of 86.00%, and that of
PSVM was achieved at a sensitivity of 46.69% and a specificity
of 93.06%. As for the testing performance, it is interesting
to observe that the cross-subject testing performance was
comparable to the in-subject testing performance. Moreover,
it is worth mentioning that the best testing performance was
achieved at a time interval of —100 ~ 0 ms for both LDA and
PSVM. In particular, the best testing performance of LDA has

a sensitivity of 68.72% and a specificity of 49.45%, and PSVM
has a sensitivity of 66.63% and a specificity of 51.30% at
best. These results indicate that the erroneous EEG at the time
interval of —100 ~ 0 ms may exhibit more prominent patterns
than the other four time intervals, which lead to increased
classification accuracies. More importantly, the classifiability of
erroneous and correct EEG samples across the subjects
confirmed our hypothesis that different subjects may exhibit
some similar EEG patterns prior to erroneous actions.
Otherwise, the leave-one-subject-out method would produce
an overall accuracy no better than a chance level. The subject-
independent erroneous EEG potentials may be associated with
a high level of uncertainty or anxiety prior to wrong response
actions. Such uncertainty/anxiety-related EEG potentials may
have much in common for human beings.

C. ROC Analysis

The ROC analysis is an important method to further inves-
tigate the classificability of the erroneous and correct EEG
samples. Tables V and VI present the in- and cross-subject
AUC values of the nine subjects based their best choices of
features. The corresponding in- and cross-subject ROC curves
are shown in Figs. 5 and 6, respectively. From the ROC plots,
one can observe that both in- and cross-subject ROC curves of
the nine subjects are apparently deviated from the 45 ° diagonal
line which represents a random chance level, particularly the
last three time intervals. These ROC curves suggested that the
distribution of erroneous EEG patterns might be different from
that of correct ones.

In addition, AUC is a convenient indicator of the discrimi-
nation between the two distributions of erroneous and correct
EEG samples. As for the in-subject experiments, the best AUC
value of LDA was 0.76, achieved at subject 4 using temporal
features at —200 ~ —100 ms. The best AUC value of PSVM
was 0.80, achieved also at subject 4 using temporal features at
—200 ~ —100 ms. The best averaged AUC values were 0.63
and 0.64 for LDA and PSVM, respectively. They were both
achieved at a time interval of —100 ~ 0 ms. In the cross-subject
experiments, the best AUC values of LDA and PSVM were both
0.78, achieved at subject 4 using temporal features at a time
interval of —100 ~ 0 ms. The best averaged cross-subject AUC
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TABLE 1V
CROSS-SUBJECT TRAINING AND TESTING RESULTS OF LDA, PSVM, AND A RANDOM MODEL BASED ON THE LEAVE-ONE-SUBJECT-OUT
CROSS-VALIDATION METHODOLOGY (RESULTS WERE ALL AVERAGED OVER THE NINE SUBJECTS)

Classifier Feature -500ms -400ms -300ms -200ms -100ms
sen. spe. sen. spe. sen. spe. sen. spe. sen. spe.
Temporal | 51.67% | 79.52% | 52.57% | 85.15% | 52.64% | 86.00% | 54.89% | 71.75% | 55.04% | 72.96%
LDA Morph. 68.09% | 64.75% | 65.59% | 63.25% | 69.06% | 66.18% | 68.04% | 62.01% | 70.00% | 63.89%
Training Wavelet 62.47% | 69.66% | 66.03% | 68.38% | 63.64% | 64.73% | 66.10% | 68.34% | 67.81% | 71.06%
Results Temporal | 46.69% | 93.06% | 47.48% | 91.99% | 48.83% | 89.00% | 52.09% | 79.39% | 56.06% | 73.15%

PSVM Morph. 66.46% | 66.20% | 66.40% | 62.63% | 67.44% | 64.80% | 66.04% | 63.57% | 69.25% | 64.69%
Wavelet 60.94% | 74.19% | 64.97% | 72.66% | 61.52% | 69.18% | 62.74% | 69.87% | 67.29% | 71.98%

Temporal | 63.39% | 48.50% | 63.98% | 49.52% | 59.75% | 50.43% | 064.17% | 48.67% | 68.72% | 49.45%
LDA Morph. 55.74% | 54.41% | 55.53% | 56.29% | 60.39% | 53.84% | 60.84% | 53.12% | 60.88% | 53.66%
Testing Wavelet 58.73% | 49.97% | 57.21% | 50.88% | 62.37% | 48.83% | 61.51% | 50.21% | 63.63% | 51.84%
Results Temporal | 54.85% | 55.43% | 54.65% | 58.40% | 55.08% | 56.55% | 61.21% | 53.46% | 66.63% | 51.30%
PSVM Morph. 54.40% | 55.68% | 54.25% | 56.20% | 60.35% | 53.51% | 56.87% | 56.41% | 60.61% | 54.46%
Wavelet 58.23% | 50.97% | 57.49% | 52.79% | 62.23% | 48.93% | 61.52% | 51.38% | 62.09% | 52.86%

RDPP - 2.31% 97.74% | 2.25% | 97.74% | 2.26% 97.74% | 2.29% 97.74% | 2.23% | 97.74%
LDA: Linear Discriminant Analysis; PSVM: Support Vector Machine; RDPP: Randomized Detection Model Based on Prior Probability of Error
Rate.

TABLE V
IN-SUBJECT AUC VALUES OF LDA AND PSVM BASED ON THE BEST CHOICE OF FEATURES
sub. -500ms -400ms -300ms -200ms -100ms
AUC Feat. AUC Feat. AUC Feat. AUC Feat. AUC Feat.
1 0.56 | Morp. | 0.53 | Temp. | 0.62 | Temp. | 0.63 Wave. | 0.68 | Temp.
2 0.59 | Wave. 0.62 | Morp. 0.55 | Morp. 0.53 Morp. 0.58 | Temp.
3 0.59 | Wave. 0.58 Temp. 0.59 Morp. 0.53 Morp. 0.64 | Morp.
4 0.6 Temp. | 0.61 Morp. | 0.75 | Morp. | 0.76 | Temp. | 0.75 | Temp.
LDA 5 0.61 Temp. 0.59 Wave. 0.58 | Temp. 0.57 | Temp. | 0.61 Wave.
6 0.68 Morp. 0.65 Temp. 0.66 | Morp. 0.63 Morp. 0.64 | Morp.
7 0.61 Temp. 0.57 Morp. 0.62 | Temp. 0.65 Morp. 0.61 Morp.
8 0.57 | Temp. 0.53 Temp. 0.6 Temp. 0.58 Wave. 0.54 | Temp.
9 0.59 Morp. 0.58 Morp. 0.62 Morp. 0.56 Morp. 0.62 | Temp.
ave. | 0.60 - 0.58 - 0.62 - 0.60 - 0.63 -
1 0.61 Morp. 0.53 Temp. 0.67 | Temp. 0.65 Wave. 0.65 | Temp.
2 0.59 | Wave. 0.67 | Temp. 0.55 | Temp. 0.55 Temp. 0.66 | Morp.
3 0.59 Wave. 0.58 Temp. 0.61 Morp. 0.59 Morp. 0.64 Morp.
4 0.59 | Temp. | 059 | Wave. | 0.74 | Morp. | 0.80 | Temp. | 0.72 | Temp.
PSVM 5 0.6 Temp. 0.57 | Wave. 0.56 | Temp. 0.54 | Morp. 0.62 | Temp.
6 0.65 Morp. 0.63 Temp. 0.64 | Morp. 0.67 | Morp. 0.65 Morp.
7 0.6 Temp. 0.54 | Morp. 0.6 Temp. 0.63 Morp. 0.62 Wave.
8 0.57 | Temp. 0.54 | Morp. 0.59 | Temp. 0.61 Wave. 0.57 | Wave.
9 0.59 | Morp. 0.6 Morp. 0.55 | Temp. 0.57 | Wave. 0.67 | Morp.
ave. | 0.60 - 0.58 - 0.61 - 0.62 - 0.64 -
TABLE VI
CROSS-SUBJECT AUC VALUES OF LDA AND PSVM BASED ON THE BEST CHOICE OF FEATURES
subject -500ms -400ms -300ms -200ms -100ms
AUC Feat. AUC Feat. AUC Feat. AUC Feat. AUC Feat.
1 0.56 | Temp. | 0.57 | Temp. | 0.57 | Temp. [ 0.68 | Wave. | 0.55 | Temp.
2 0.53 | Morp. 0.58 | Temp. | 0.56 | Morp. 0.59 | Morp. | 0.57 | Temp.
3 0.6 Morp. 0.58 Wave. | 0.58 | Wave. 0.57 | Temp. | 0.59 | Temp.
4 0.67 | Temp. 0.6 Temp. | 0.73 Wave. 0.76 | Temp. | 0.78 | Temp.
LDA 5 0.6 Temp. 0.56 Morp. 0.57 | Temp. 0.6 Temp. 0.64 | Temp.
6 0.64 Morp. 0.64 Morp. 0.64 | Morp. 0.66 | Morp. 0.63 Morp.
7 0.59 | Morp. 0.59 | Temp. | 0.62 | Morp. 0.56 | Wave. | 0.61 Morp.
8 0.55 Temp. 0.56 | Temp. 0.57 | Temp. 0.6 Temp. 0.58 Wave.
9 0.57 Morp. 0.6 Morp. 0.61 Morp. 0.59 Morp. 0.57 Temp.
ave. 0.59 - 0.59 - 0.61 - 0.62 - 0.61 -
1 0.56 | Wave. 0.57 | Morp. | 0.57 | Temp. | 0.68 | Wave. | 0.57 | Wave.
2 0.53 | Morp. 0.59 | Wave. | 0.56 | Morp. 0.59 | Morp. | 0.57 | Temp.
3 0.6 Morp. 0.58 | Temp. | 0.58 Wave. 0.57 | Temp. | 0.59 | Temp.
4 0.67 Temp. 0.64 | Temp. 0.73 Wave. 0.75 | Temp. 0.78 | Temp.
PSVM 5 0.6 Temp. 0.56 Morp. 0.57 | Temp. 0.6 Temp. 0.64 | Temp.
6 0.64 Morp. 0.64 Morp. 0.64 | Morp. 0.66 Morp. 0.63 Morp.
7 0.57 Morp. 0.6 Wave. | 0.61 Morp. 0.56 | Morp. | 0.61 Morp.
8 0.55 Temp. 0.56 | Temp. 0.59 | Temp. 0.6 Temp. 0.58 Wave.
9 0.57 Morp. 0.6 Morp. 0.58 Morp. 0.6 Morp. 0.57 | Temp.
ave. 0.59 - 0.59 - 0.60 - 0.62 - 0.62 -
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Fig. 5. In-subject ROC curves of the nine subjects at each time interval for LDA
the nine subjects is denoted in the bottom part of each subplot.
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Fig. 6. Cross-subject ROC curves of the nine subjects of LDA and PSVM at each time interval based on their best choice of features. The averaged AUC value

over the nine subjects is denoted in the bottom part of each subplot.

value of LDA was 0.62, achieved at —200 ~ —100 ms, and the
best averaged AUC value of PSVM was also 0.62, achieved at
both time intervals of —200 ~ —100 ms and —100 ~ 0 ms. Itis
noted that the averaged in- and cross-subject AUC values were
all above 0.60 at the last three time intervals of —300 ~ 200,
—200 ~ 100, and —100 ~ 0 ms. In addition, we notice that
the classification accuracy on subject 4 was generally higher
than those of the other nine subjects. When excluding subject
4, we still can get an averaged AUC values of around 0.60 at
the last three time intervals. These results further confirmed
our hypothesis that the most salient information of the brain
activity associated with erroneous keystrokes may be gained
within 300 ms prior to keystrokes. The AUC values indicated

that the distributions of erroneous and correct EEG patterns
might be different. As a result, erroneous keystrokes might be
predictable based on EEG recordings.

VI. CONCLUSION AND DISCUSSION

Given that numerical typing errors are detectable in ad-
vance, some error prevention systems can be implemented
(e.g., decimal-oriented error detection scheme [33]). For ex-
ample, whenever there is an input digit being detected as a
potential erroneous entry with relatively high chance, the error
prevention system can halt the input and check the digit to
see whether the check equation is satisfied or not. Without
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error detection beforehand, the system may have to check every
digit and put the process on halt until the whole data set goes
through. With error prediction, in contrast, maybe only half of
the data need to be checked online, and then, around 80% of
the errors might be detected before processing, saving much of
idle time. The rest can still be processed offline by traditional
data-checking mechanisms or methods, as described in the
introduction part. Obviously, the error detection can provide
some early filtering mechanisms to prevent erroneous data from
being input into the system and thus improves system safety and
performance, as well as reduces cost or loss related to typing
errors.

In this paper, we have applied data mining techniques to
investigate EEG patterns during numerical typing. The tempo-
ral, morphological, and wavelet-based time—frequency features
were extracted. Popular data mining tools, namely, LDA and
PSVM, were employed in this binary classification task. Since
the number of erroneous EEG samples of each subject was
too few to train the classifiers, we designed the in-subject
leave-one-pattern-error-out and the cross-subject leave-one-
subject-out cross-validation methodology to achieve an unbi-
ased estimate of classification performance. The experimental
results of this study are promising. The averaged in- and cross-
subject AUC values were both above 0.60 at the last three
time intervals of —300 ~ 200, —200 ~ 100, and —100 ~ 0 ms.
These results indicated that the distribution of erroneous EEG
patterns may be considerably different from that of the correct
ones, particularly at the last 300 ms prior to keystrokes. The
results are very encouraging considering that the classification
problem of this study is extremely challenging due to the highly
imbalanced data structure and that we only used a very simple
and straightforward classification framework. This study con-
firmed our hypothesis that it is possible to proactively predict
erroneous keystrokes in advance of error occurrence based on
EEG recordings.

All our experiments were performed based on nine subjects.
The number of subjects is limited due to difficulties in recruit-
ing subjects and complex experimental settings. Although this
study based on the limited data pool might not represent a
generalized result for all people, the concept of automated early
prediction of erroneous keystrokes seems to be conceivable
based on the classification results of this study. It implied that
data mining techniques, which have advanced classification and
prediction capabilities, could facilitate detection of transient
changes in brain dynamics from EEG recordings. To the best
of our knowledge, this study is among the first attempts to
investigate EEG-based brain-wave patterns for numerical typ-
ing errors. The results of this study may pave a new way of
developing an early detection system of erroneous keystrokes
to assist people in various typing tasks.

Finally, it is noted that we only focused on the early detection
of typing errors in this study. As a result, only the EEG
data prior to keystrokes were used. However, for less crucial
tasks, we also believe that the EEG data a little (such as a
few hundreds of milliseconds) after the keystrokes can also
be very useful for typing error detection. It is still able to
provide error warnings to the user within 1 s, and the user can
conveniently correct the error right away easily. The using of
data after keystrokes will be one of the future works in this
study.
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